

M2CAI WORKFLOW CHALLENGE: CONVOLUTIONAL NEURAL NETWORKS WITH TIME SMOOTHING AND HIDDEN MARKOV MODEL FOR VIDEO FRAMES CLASSIFICATION

CONTEXT

Goal: Surgical video frames classification ▷ Videos of size 1920x1080 Shot at 25 frames per second at IRCAD research center in Strasbourg, France \triangleright 27 training videos \triangleright 15 testing videos

 $\triangleright 8$ classes

Clean image

Noisy image

 \triangleright Online prediction: $P(y|x_i, x_{i-1}, x_{i-2}, ...)$

- \triangleright Usefull to
- ▷ Monitor surgeons
- ▷ Trigger automatic actions

DEEP LEARNING METHODS

Remi CADENE, Thomas ROBERT, Nicolas THOME, Matthieu CORD

Sorbonne Universités, UPMC Univ Paris 06, LIP6, Paris, France

COMPARISON OF DEEP LEARNING ARCHITECTURES

COMPARISON OF SMOOTHING METHODS

 $1 \times 1 \times 4096 \quad 1 \times 1 \times 1000$

	Accuracy (%)
	60.53
	69.13
	78.18
	79.06
ıs)	$\boldsymbol{79.24}$

34-layer residual	
image	
7x7 conv, 64, /2	
3x3 conv. 64	
3x3 conv, 128, /2	
3x3 conv, 128	
3x3 conv, 256	
3x3 conv, 512, /2	
3x3 conv, 512	
3x3 conv, 512	
3x3 conv 512	
3x3 conv. 512	
avg pool	
fc 1000	

▷ Initial state probabilities \triangleright Matrix of probabilities of transition between states ▷ Gaussian parameters for emissions of observations (mean and co-variance matrix)

CalotTriangleDissect ClippinaCutti GallbladderDissectio GallbladderPackagir CleaningCoagulation GallbladderRetraction

Future works: \triangleright Fine tuning CNN on full trainset (not only 80%) \triangleright Ensembling several fine tuned CNNs **Results are reproducible with Torch7:** github.com/Cadene/torchnet-m2caiworkflow arxiv.org/abs/1610.05541

- *ECCV*, 2016.

- *ICLR*, 2014.

SMAI, LABEX

HIDDEN MARKOV MODEL

6

CONCLUSION

Code

Paper

Cadene et al. Master's Thesis : Deep Learning for Visual Recognition. arXiv, 2016.

2 He K. et al. Identity Mappings in Deep Residual Networks.

3 Durand et al. WELDON: Weakly Supervised Learning of Deep Convolutional Neural Networks. CVPR, 2016.

Szeggedy et al. Rethinking the inception architecture for computer vision CVPR, 2015.

5 Diederik et al. Adam: A Method for Stochastic Optimization.

6 Simonyan et al. Very deep convolutional networks for largescale image recognition. ICLR, 2014.